

To Match or Not to Match: Revisiting Image Matching for Reliable Visual Place Recognition

Davide Sferrazza¹, Gabriele Berton¹, Gabriele Trivigno¹, Carlo Masone^{1,2}

¹Politecnico di Torino, Italy

²Focoos AI

Background

- ★ Visual Place Recognition (VPR) answers the question "where was this picture taken?" by comparing a query image against a database of reference images with known locations using global descriptors
- \star Image Matching methods are used as a means of re-ranking for the top-K retrieved results to trade-off computational cost for performance

★ To date, does the re-ranking step still guarantee improved performance?

Re-ranking via Image Matching

Local Features: keypoints coordinates and descriptors

Spatial Verification matching: match keypoints between a query and a retrieved image

Re-ranking by number of matches

State-Of-The-Art VPR methods have reached a point where re-ranking can degrade performance in some scenarios

Employing Image Matching methods as a verification step to assess the retrieval confidence helps build more robust VPR systems

In the Era of Foundation Models

Performance of Retrieval + Re-ranking, as well as Retrieval only, over the years.

Re-ranking strategy worsens performance across datasets, with only a few exceptions Pure Retrieval vs Re-Ranking Recall@1 Pure Retrieval Average Re-Ranking Best Re-Ranking MSLS Pitts30k Night Occlusion test V1 test V2

Towards Adaptive VPR Systems

- ★ Use the **number of inliers** (*i.e.*, matches that survive the RANSAC post-processing) as a measure of confidence for the top-1 retrieved image
- ★ Fewer inliers suggests greater uncertainty, and thus greater probability of being a wrongly localized query
- Low uncertainty leads to re-ranking being detrimental
- ★ High uncertainty allows for improvement through re-ranking

Best baseline

Avg. Image Matching method

Best Image Matching method

methods provide better uncertainty scores than existing baselines. This highlights how the **number of inliers** provides a **reliable** measure of uncertainty and aids in creating robust VPR systems

On challenging datasets, Image Matching

Method	Baidu	MSLS	Pitts30k	SF-XL	SF-XL	SF-XL	SF-XL	SVOX	SVOX	Tokyo	Average	
		Val		Night	Occlusion	test V1	test V2	Night	Sun	24/7	riverage	
L2-distance	94.0	97.0	99.1	69.8	77.5	99.5	98.0	99.2	99.1	99.9	93.3	
PA-Score	93.8	96.5	98.9	67.3	71.6	98.6	98.0	99.0	98.9	99.8	92.2	
SUE	95.5	97.1	98.6	73.6	73.5	99.1	98.2	99.6	99.0	99.9	93.4	
Random	88.0	90.8	94.3	53.2	45.9	94.7	96.0	94.8	97.6	96.9	85.2	