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% Visual Place Recognition (VPR) answers the question “where was this
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To Match or Not to Match: Revisiting Image Matching

for Reliable Visual Place Recognition
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Background

picture taken?” by comparing a query image against a database of

Re-ranking via Image Matching

Local Features: Spatial Verification matching:

Re-ranking by

reference images with known locations using global descriptors keypoints match keypoints between a number of
* Image Matching methods are used as a means of re-ranking for the top-K coordinates ana query and a retrieved image matches
retrieved results to trade-off computational cost for performance deStOfS
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* To date, does the re-ranking step still guarantee improved performance?
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State-Of-The-Art VPR methods have reached a point where re-ranking can
degrade performance in some scenarios

Employing Image Matching methods as a verification step to assess the

retrieval confidence helps build more robust VPR systems
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Performance of Retrieval + Re-ranking, as well as Retrieval only,
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In the Era of Foundation Models

over the years.
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Re-ranking strategy worsens performance across datasets, with only a few exceptions

100+

80 -

60)

40 -

2() 1

U=

Pure Retrieval vs Re-Ranking
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% Use the number of inliers (i.e., matches that survive 2o.o-i
the RANSAC post-processing) as a measure of 175!
confidence for the top-1 retrieved image *515.0-:

% Fewer inliers suggests greater uncertainty, and f 125!
thus greater probability of being a wrongly £ 100!
localized query = 75!

% Low uncertainty leads to re-ranking being % 50!
detrimental 251,

% High uncertainty allows for improvement through 0.0
re-ranking

Towards Adaptive VPR Systems
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Uncertainty Estimation
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B Best baseline

B Best Image Matching method  rogbust VPR systems
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On challenging datasets, Image Matching
methods provide better uncertainty scores
than existing baselines. This highlights how
the number of inliers provides a reliable
mmm Ave Image Matching method ITN€ASUre of uncertainty and aids in creating

NSt BAlOL i RIHEOOK b Oeolision test VL BstVE Night Sun 9477 | o0es
L2-distance 940 970 991 69.8 775 995 980 992 99.1 999 | 933
Averaga PA-Score 93.8 965 989 673 716 986 980 990 989 998 | 922
SUE 955 97.1 986 73.6 735 99.1 982 99.6 99.0 99.9 | 934
Random 88.0 90.8 943 532 459 947 960 948 976 969 | 852




